Asymptotic Theory for Linear-Chain Conditional Random Fields

نویسندگان

  • Mathieu Sinn
  • Pascal Poupart
چکیده

In this theoretical paper we develop an asymptotic theory for Linear-Chain Conditional Random Fields (L-CRFs) and apply it to derive conditions under which the Maximum Likelihood Estimates (MLEs) of the model weights are strongly consistent. We first define L-CRFs for infinite sequences and analyze some of their basic properties. Then we establish conditions under which ergodicity of the observations implies ergodicity of the joint sequence of observations and labels. This result is the key ingredient to derive conditions for strong consistency of the MLEs. Interesting findings are that the consistency crucially depends on the limit behavior of the Hessian of the likelihood function and that, asymptotically, the state feature functions do not matter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Psi-conditional asymptotic stability of first order nonlinear matrix Lyapunov system

We provide necessary and sucient conditions for psi-conditional as-ymptotic stability of the solution of a linear matrix Lyapunov system and sucientconditions for psi -conditional asymptotic stability of the solution of a rst ordernon-linear matrix Lyapunov system X0 = A(t)X + XB(t) + F(t;X).

متن کامل

Heterogeneous Web Data Extraction Algorithm Based On Modified Hidden Conditional Random Fields

As it is of great importance to extract useful information from heterogeneous Web data, in this paper, we propose a novel heterogeneous Web data extraction algorithm using a modified hidden conditional random fields model. Considering the traditional linear chain based conditional random fields can not effectively solve the problem of complex and heterogeneous Web data extraction, we modify the...

متن کامل

Gradient computation in linear-chain conditional random fields using the entropy message passing algorithm

The paper proposes a new recursive algorithm for the exact computation of the linear chain conditional random fields gradient. The algorithm is an instance of the Entropy Message Passing (EMP), introduced in our previous work, and has the purpose to enhance memory efficiency when applied to long observation sequences. Unlike the traditional algorithm based on the forward and the backward recurs...

متن کامل

Efficient Computation of Entropy Gradient for Semi-Supervised Conditional Random Fields

Entropy regularization is a straightforward and successful method of semi-supervised learning that augments the traditional conditional likelihood objective function with an additional term that aims to minimize the predicted label entropy on unlabeled data. It has previously been demonstrated to provide positive results in linear-chain CRFs, but the published method for calculating the entropy...

متن کامل

Graph-based LearningModels for Information Retrieval: A Survey

3 Graph Analysis 6 3.1 Analysis Based on Spectral Graph Theory . . . . . . . . . . . . . 7 3.2 Analysis Based on Random Field Theory . . . . . . . . . . . . . . 9 3.2.1 Markov Random Fields . . . . . . . . . . . . . . . . . . . . 9 3.2.2 Conditional Random Fields . . . . . . . . . . . . . . . . . 10 3.2.3 Gaussian Random Fields . . . . . . . . . . . . . . . . . . . 11 3.3 Analysis Based onMatri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011